Colombian Agricultural Sector’s Early Estimator of Gross Domestic Production Using Nowcasting and Big Data Methods
DOI:
https://doi.org/10.4067/S0718-27242024000200054Keywords:
Nowcasting, Forecasting, google trends, Machine Learnig, Big DataAbstract
Facing challenges like the COVID-19 pandemic, statistical production increasingly relies on non-traditional data sources for timely and accurate information. In this regard, The National Statistical Office of Colombia (DANE, by its acronym in Spanish) initiated a project, supported by the Statistics Advisory Council, to develop an early estimator for the Colombian agricultural sector. This paper presents the results for the implementation of a Ridge model and Zero Shot Classification to estimate the Gross Domestic Product (GDP) of the agricultural sector, leveraging Google News and Google Trends. Results reveal that these alternative sources offer valuable insights into economic trends. Combining machine learning techniques with Nowcasting methods yielded precise projections. The Ridge method demonstrated the lowest estimation error, providing an early GDP indicator for the agricultural sector of 8,188 billion Colombian pesos for 2022 Q2, 30 days ahead of official publication.
Downloads
References
Argote, M., & Parra, L. (2020). Global Entrepreneurship Analytics, using GEM Data. Routledge, Taylor and Francis. https://doi.org/10.4324/9780429316715
Ashouri, M., Cai, K., Lin, F., & Shmueli, G. (2018). Assessing the value of an information system for developing predictive analytics: The case of forecasting school-level demand in Taiwan. Service Science, 10(1), 58–75. https://doi.org/10.1287/serv.2017.0200
Banbura, M., Giannone, D., & Reichlin, L. (2011). Nowcasting. In L. Oxford Academy (Ed.), Oxford Handbook on Economic Forecasting (pp. 193-224). Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195398649.013.0008
Banbura, M., & Modugno, M. (2014). Maximum likelihood estimation of factor models on datasets with arbitrary pattern of missing data. Journal of Applied Econometrics, 29(1), 133–160. https://doi.org/10.1002/jae.2306
Big Data-Statista. (2022). Amount of data created, consumed, and stored 2010-2023, with forecasts to 2025. Global state of big data/AI adoption 2023. Statista.
Bok, B., Caratelli, D., Giannone, D., Sbordone, A. M., & Tambalotti, A. (2018). Macroeconomic nowcasting and forecasting with big data. Annual Review of Economics, 10, 615–643. https://doi.org/10.1146/annurev-economics-080217-053214
CCSA. (2020). How COVID-19 is changing the world: A statistical perspective, Volume II. ReliefWeb. Retrieved from https://www.reliefweb.int
Cepni, O., Güney, I. E., & Swanson, N. R. (2019). Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes. International Journal of Forecasting, 35(2), 555–572. https://doi.org/10.1016/j.ijforecast.2018.10.008
Chakraborty, S., Mengersen, K., Fidge, C., Ma, L., & Lassen, D. (2016). A Bayesian Network-based customer satisfaction model: A tool for management decisions in railway transport. Decision Analytics, 3(1), 1–24. https://doi.org/10.1186/s40165-016-0021-2
Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88, 2–9. https://doi.org/10.1111/j.1475-4932.2012.00809.x
Corona, F., González-Farías, G., & López-Pérez, J. (2021). A nowcasting approach to generate timely estimates of Mexican economic activity: An application to the period of COVID-19. ArXiv Preprint ArXiv:2101.10383. https://doi.org/10.48550/arXiv.2101.10383
DANE. (2020). Boletín Técnico Producto Interno Bruto (PIB). Retrieved from https://www.dane.gov.co/files/investigaciones/boletines/pib/bol_PIB_Itrim20_producion_y_gasto.pdf
Dauphin, M. J.-F., Dybczak, M. K., Maneely, M., Sanjani, M. T., Suphaphiphat, M. N., Wang, Y., & Zhang, H. (2022). Nowcasting GDP-A Scalable Approach Using DFM, Machine Learning and Novel Data, Applied to European Economies. International Monetary Fund.
Dave, E., Leonardo, A., Jeanice, M., & Hanafiah, N. (2021). Forecasting Indonesia exports using a hybrid model ARIMA-LSTM. Procedia Computer Science, 179, 480–487. https://doi.org/10.1016/j.procs.2021.01.031
DSCN. (2020). Primera estimación rápida del Indicador de Seguimiento a la Economía. Ed. Departamento Nacional de Estadística, DANE, Bogotá, Colombia.
(Eurostat), E. C. (2016). Overview of GDP flash estimation methods: 2016 edition. Publications Office. https://doi.org/10.2785/51658
(Eurostat), E. C. (2020). Methodological note GUIDANCE ON QUARTERLY NATIONAL ACCOUNTS ( INCLUDING FLASH ) ESTIMATES IN THE CONTEXT OF THE COVID-19 CRISIS.
Feldmeyer, D., Nowak, W., Jamshed, A., & Birkmann, J. (2021). An open resilience index: Crowdsourced indicators empirically developed from natural hazard and climatic event data. Science of the Total Environment, 774, 145-734. https://doi.org/10.1016/j.scitotenv.2021.145734
Giannone, D., Lenza, M., & Primiceri, G. E. (2021). Economic predictions with big data: The illusion of sparsity. Econometrica, 89(5), 2409–2437. https://doi.org/10.3982/ECTA17842
Guevara, D. (2021). Crisis del COVID-19: Impactos socioeconómicos y retos para países Latinoamericanos. Cuadernos de Economía, 40(85), 1-6.
Jardet, C., & Meunier, B. (2022). Nowcasting world GDP growth with high-frequency data. Journal of Forecasting, 41(6), 1181-1200. https://doi.org/10.1002/for.2858
Joseph, A., Kalamara, E., Kapetanios, G., & Potjagailo, G. (2021). WITHDRAWN: Forecasting UK inflation bottom up. International Journal of Forecasting, 3(5), 1-15. https://doi.org/10.1016/j.ijforecast.2021.03.005
Levenberg, A., Simpson, E., Roberts, S., & Gottlob, G. (2013). Economic Prediction using heterogeneous data streams from the World Wide Web. In Scalable Decision Making: Uncertainty, Imperfection, Deliberation (SCALE), Proceedings of ECML/PKDD Workshop.
Lewis, N. D. (2016). Deep Time Series Forecasting with Python: An Intuitive Introduction to Deep Learning for Applied Time Series Modeling. Create Space Independent Publishing Platform.
Li, J., Li, G., Liu, M., Zhu, X., & Wei, L. (2022). A novel text-based framework for forecasting agricultural futures using massive online news headlines. International Journal of Forecasting, 38(1), 35–50. https://doi.org/10.1016/j.ijforecast.2020.02.002
Mariano, R. S., & Murasawa, Y. (2010). A coincident index, common factors, and monthly real GDP. Oxford Bulletin of Economics and Statistics, 72(1), 27–46. https://doi.org/10.1111/j.1468-0084.2009.00567.x
Marquardt, D. W., & Snee, R. D. (1975). Ridge regression in practice. The American Statistician, 29(1), 3–20. https://doi.org/10.2307/2683673
Martínez, W., Nieto, F. H., & Poncela, P. (2016). Choosing a dynamic common factor as a coincident index. Statistics & Probability Letters, 109, 89–98. https://doi.org/10.1016/j.spl.2015.11.008
Masini, R. P., Medeiros, M. C., & Mendes, E. F. (2021). Machine learning advances for time series forecasting. Journal of Economic Surveys, 1(37), 76-111. https://doi.org/10.1111/joes.12429
Menculini, L., Marini, A., Proietti, M., Garinei, A., Bozza, A., Moretti, C., & Marconi, M. (2021). Comparing prophet and deep learning to ARIMA in forecasting wholesale food prices. Forecasting, 3(3), 644–662. https://doi.org/10.3390/forecast3030040
Richardson, A., van Florenstein Mulder, T., & Vehbi, T. (2021). Nowcasting GDP using machine-learning algorithms: A real-time assessment. International Journal of Forecasting, 37(2), 941–948. https://doi.org/10.1016/j.ijforecast.2020.10.005
Tuo, S., Chen, T., He, H., Feng, Z., Zhu, Y., Liu, F., & Li, C. (2021). A regional industrial economic forecasting model based on a deep convolutional neural network and big data. Sustainability, 13(22), 12789. https://doi.org/10.3390/su132212789
Wang, C., & Cao, Y. (2021). Forecasting Chinese economic growth, energy consumption, and urbanization using two novel grey multivariable forecasting models. Journal of Cleaner Production, 299, 126863. https://doi.org/10.1016/j.jclepro.2021.126863
Xie, G., Qian, Y., & Wang, S. (2021). Forecasting Chinese cruise tourism demand with big data: An optimized machine learning approach. Tourism Management, 82, 104208. https://doi.org/10.1016/j.tourman.2020.104208
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Technology Management & Innovation
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.